Archivos de la categoría ‘AHORRO ENERGÉTICO’

Captura.PNG

El viernes pasado salieron nuevamente las ayudas en materia de ahorro y diversificación energética para este año 2018. A continuación tenéis un  resumen que han preparado desde Intergia.

 Básicamente han salido similares a años anteriores pero con matices. Alguno de ellos:

  •        Este año sí que aplican a agricultura pero con un tope subvencionado para ayudas de minimis de 15.000 € (cuando se trate de producción primaria de productos agrícolas)
  •        A diferencia de otros años el autoconsumo conectado a red sí está subvencionado.

 La líneas de ayuda son:

  • Solar Fotovoltaica
  • Biomasa
  • Geotermia
  • Solar termica
  • Minihidraúlica
  • Eólica

 Actuaciones subvencionables para su aprovechamiento en:

  •        Instalaciones agrícolas, ganaderas oindustriales
  •        En el sector servicios y residencial
  •        Electrificación rural
  •        Vivienda
  •        Alumbrado
  •        Bombeo
  •        Regadío
  •        Etc.

 Los beneficiarios:

  •        Empresas privadas y autónomos (máximo subvencionable un 60%)
  •        Corporaciones locales (máximo subvencionable un 70%)
  •        Instituciones o entidades sin ánimo de lucro (máximo subvencionable un 50%)
  •        Comunidades de propietarios (máximo subvencionable un 50%)
  •        Particulares (máximo subvencionable un 50%)

Fecha tope para registrar la petición 25 de Junio.

Foto: Riego Solar Directo en Belchite. Intergia.

 

 

Captura

Recientemente hemos terminado el Proyecto de embalse elevado para la Comunidad de Regantes del Sector VIII del Tramo III del Canal de Monegros en Poleñino (Huesca) con el objetivo de mejorar la gestión energética del sistema del riego por medio del bombeo existente y queremos compartir con todos los resultados que están previstos con la ejecución de esta obra.

La Comunidad está compuesta por un total de 253 comuneros y  suministra agua para riego a una superficie de cultivo de alrededor de 2.500 has. Prácticamente el 100 % de la superficie son cultivos extensivos principalmente maíz, alfalfa y cereales de invierno y se riegan por aspersión

DETALLE DE LA GESTIÓN ACTUAL DEL RIEGO EN LA COMUNIDAD.

En la actualidad la Comunidad de regantes dispone de una balsa de regulación de 186.000 m3 de capacidad total.

De esta balsa se riega una superficie de alrededor de 2.500 has distribuidas de la siguiente forma:

• 925 has en red de gravedad, sin necesidad de bombeo.
• 835 has en red de bombeo de presión media (40 m.c.a.)
• 745 has en red de bombeo de presión alta (70 m.c.a.)

OBJETIVO DEL PROYECTO.

Debido a la estacionalidad del riego frente a otros usos de la energía, el sector agrícola necesita la contratación de altas potencias y en periodos caros para suministrar las necesidades de riego en periodos muy concretos.

Además debido a la variabilidad de las tarifas, los diseños de riego precisan la contratación de periodos que no estaban contemplados en el proyecto original.

A continuación se detalla de forma gráfica la potencia en periodo P-6 disponible y usada por meses (eje abcisas):

Captura

Como puede verse en el gráfico, en el mes de julio que coincide con el de máximas necesidades de riego, solo el 52,5 % de la energía disponible y contratada en el periodo más barato es usada, el resto no se usa.

SOLUCIÓN CONSTRUCTIVA.

Aprovechando la existencia de una meseta en las cercanías de la estación de bombeo a una cota media de unos 420 m. se ha optado por ejecutar un embalse de 250.000 m3 que permita aprovechar la totalidad de las horas de bombeo en periodo P6 en el mes de julio.

A partir de los consumos de agua para las redes presurizadas a 40 y 70 mca se propone cambiar el patrón de contratación de la potencia según la “alternativa balsa” según la siguiente tabla:

Captura

Como conclusión observamos que el volumen del embalse nos permite modificar la potencia contratada de  manera que minimizamos la potencia en los periodos más caros y además la gestión del riego se hace más flexible pasando a disponer de agua para regar las 24 horas del día.

El ahorro del término de energía se cuantifica en unos 10.000 € anuales adicionales.

Por último os recordamos que este tipo de actuaciones suelen ser objeto de ayuda económica por diferentes administraciones, concretamente el Proyecto que se ha descrito  se ha acogido a las  subvenciones para la mejora y modernizacion de regadíos por el Gobierno de Aragón.

 

Independientemente de su utilización para el dimensionado óptimo en la fase de proyecto, la aplicación GESTAR nos permite optimizar el funcionamiento de las estaciones de bombeo.

En una reciente aplicación del software a un caso real  he podido comprobar su utilidad y la sencillez de su manejo. Una vez introducidas las variables, como a continuación explicaré, es el mismo personal de guardería y mantenimiento el que se hace cargo de las futuras optimizaciones, en función de la demanda de los regantes.

En primer lugar se ha realizado la verificación de los datos de nodos (hidrantes) y elementos (tuberías y bombeos). La introducción de los datos de hidrantes y tuberías es bastante intuitivo y únicamente para la definición de la estación de bombeo como un elemento único (aunque se dispongan de varias bombas) se debe pasar por la opción de “regulación de bombeo”.

post1

En esta opción podemos introducir varias bombas funcionando a unas revoluciones por minuto (r.p.m) fijas y hasta dos bombas funcionando  a régimen variable.  El software nos permite conocer para diferentes caudales que rendimiento vamos a obtener del conjunto de la estación de bombeo. Esto resulta muy útil para la fase de proyecto y también para la posterior gestión. En la siguiente imagen se muestra el resultado que ofrece GESTAR para la simulación de un conjunto de bombas, como una estación de bombeo podríamos decir “compacta” o en la que se simula el conjunto de bombas con una única curva.

post 3

En el “caso de estudio” que presento, la Comunidad de Regantes (C.R) disponía de un listado con las necesidades de agua de los diferentes hidrantes (número de horas de apertura)  y la C.R necesitaba optimizar el bombeo para cubrir esas necesidades. Por ejemplo, desconocían si era  posible “encajar” los horarios de los hidrantes en el periodo P6, con el precio más económico de la energía.

Aunque el estudio se realizó para  los diferentes ramales, con alturas de presión y equipos de bombeo diferentes, los resultados de una de las redes los podemos mostrar a continuación a modo de ejemplo. En la siguiente imagen se aprecian los horarios de riego de los diferentes hidrantes, ya trasladados al GESTAR.

post2

Uno  de los primeros resultados que nos ofrece el software es el rendimiento del conjunto de la estación de bombeo, como podemos ver en la siguiente captura de imagen:

post4

También conoceremos el  caudal de la impulsión, en base al cual podemos determinar si la estación de bombeo está funcionando dentro de los parámetros de rendimiento que el fabricante nos haya facilitado, además de contrastarlo con la gráfica mostrada más arriba. El rango de caudales también se debe mantener en unos mínimos para que el rendimiento de las  bombas individuales no disminuya excesivamente, incluidas las bombas con variador de velocidad.

Por último, GESTAR también nos va a ofrecer un listado del estado en el que se encuentra cada nodo (principalmente régimen de presión) para cada intervalo de tiempo que nosotros le hayamos prefijado (media hora, una hora). De esta manera el personal responsable de la gestión de la C.R puede prever si en algún hidrante puede producirse un déficit de presión según el patrón de riego establecido y si es así poder modificarlo de manera sencilla.

En resumen, y bajo mi forma de ver, nos encontramos con una herramienta potente para el diseño de redes colectivas de riego y también para la optimización de la gestión de estaciones de bombeo para riego.

31-10-2014 8.10.58 1En el post anterior hice referencia a la importancia de incorporar baterias de condensadores y variadores de velodidad en las instalaciones de bombeo para optimizar su funcionamiento. En este post pretendo dar una serie de recomendaciones  (en tiempo real, semanal, mensual, anual y trianual) con el objetivo de que el funcionamiento de las instalaciones esté dentro de los parámetros correctos.

En primer lugar destacaría que es fundamental realizar un seguimiento en tiempo real por medio del telecontrol de los siguientes conceptos:

  1. Medición de la temperatura de rodamientos y devanados.
  2. Medición de caudal, presión y potencia absorbida.

Independientemente se deberían llevar a cabo también visitas insitu por medio de las cuales se hará un  seguimiento semanal de:

  1. Vibraciones o ruidos extraños.
  2. Goteo excesivo a través de empaquetaduras.
  3. Nivel de aceite de transmisiones.
  4. Fugas de aceite.
  5. Limpieza de ventilador.

El control será mensual respecto a:

  1. Engrasado de rodamientos según especificaciones del fabricante.
  2. Comprobación y reposición de lubricante recomendado por el fabricante en las cantidades y condiciones recomendadas.
  3. Comprobación de tolerancia en prensaestopas.
  4. Registro de horas de funcionamiento.
  5. Comprobación del rendimiento medio del bombeo.

El control será anual en los siguientes casos:

  1. Sustitución de empaquetaduras.
  2. Alineación de la bomba y el motor.
  3. Vaciar completamente y rellenar de nuevo el circuito de engrase.
  4. Verificación de las conexiones.
  5. Limpieza de las bobinas.
  6. Medición de la resistencia de aislamiento.
  7. Revisión del funcionamiento de las protecciones (caldeo y sondas de temperatura)
  8. Comparación de los valores de corriente, tensión, potencia  y rendimiento medio con los valores nominales.

Cada  tres años se controlará el desgaste de rodamientos de bomba y se sustituirán si es necesario.

Se realizará un mantenimiento quinquenal en los conceptos:

  • Desmontaje completo de las bombas en todas sus piezas, revisión y limpieza de las mismas.
  • Control de rodetes y rodamientos.
  • Pintado del cuerpo.

El mantenimiento será cada diez  años para la sustitución de rodetes y rodamientos

La sustitución de los rodamientos se recomienda en todo caso realizarla cada 12.000 horas de trabajo.

Las anteriores medidas se deben adoptar por razones de eficiencia energética y para evitar superar 10 ó más puntos las pérdidas de rendimiento respecto a los rendimientos exigidos en el Proyecto Constructivo o en las garantías del fabricante en el suministro de los equipos.

 

estacin de bombeo(1)

Como habreis podido leer en los últimos post he hecho referencia al control de calidad y seguimiento del funcionamiento de las redes de riego. En muchas de estas instalaciones nos encontramos también con equipo de bombeo.

Debido al encarecimiento de la energía en los últimos años practicamente todas las instalaciones cuentan con  baterías de condensadores o la tecnología adecuada (variadores de frecuencia) que compense la energía reactiva generada por las instalaciones, de manera que la Comunidad de regantes responsable de la factura eléctrica, no tenga perjuicio económico por este concepto.

En la factura eléctrica mensual aparece la penalización por reactiva cuando el factor de potencia cosϕ tiene un valor menor a 0,95.

En las Comunidad de regantes la energía reactiva se puede resumir como el consumo por parte del transformador y de los motores de las bombas de energía desfasada (“sucia”).

Las penalizaciones se calculan por periodos, solamente para los excesos de energía reactiva consumida, fuera de los periodos valle y con la siguiente fórmula:

P = R (kVArh) – 1/3·E (kWh x Tr ( €/kw)

Siendo:

R: reactiva

E: energía activa

Tr: precio reactiva

La cantidad de energía reactiva por energía total se mide con el factor de potencia (estimado con el Cos ϕ):

11-8-2014 13.8.8 1Donde:

Energía activa consumida:   kWh

Energía reactiva consumida: kVArh

Cuanto más bajo sea el valor de Cos ϕ, más caro es el Tr y por tanto más cara es la penalización por la energía reactiva

Para evitar que las Compañías Eléctricas penalicen por esta energía “sucia”, es necesario instalar una batería de condensadores que contrarreste el efecto de los motores.

Independientemente de lo anterior es fundamental mantener y medir la eficiencia instantánea de los equipos de bombeo.

Si tomamos como referencia las directrices del Instituto para la Diversificación y Ahorro de Energía (IDAE):

– Eficiencia del Equipo de Bombeo > 0,650 (calificada como Excelente por el IDAE).

– Eficiencia < 0,450 (calificada por IDAE como inaceptable)

Entre estos valores se pueden tomar valores según curvas semejante a las penalizaciónes usada por las compañías suministradoras para penalizar los excesos de potencia en la factura eléctrica.

Las curvas características de las bombas hidráulicas nos señalan gráficamente la relación entre el caudal, altura, rendimiento y potencia absorbida en el eje de la bomba. La dependencia entre estos valores se obtiene en el banco de pruebas a velocidad constante. Entre las distintas curvas características, a distintas velocidades de funcionamiento de una bomba, se cumple la ley de semejanza de Newton. En el cambio de un número de revoluciones a otro, el caudal varía linealmente, la altura varía con el cuadrado y la potencia lo hace aproximadamente con la tercera potencia de la relación del número de revoluciones.

La intersección de la curva característica (a unas determinadas revoluciones) de una bomba con la curva resistente de una impulsión determina el punto funcionamiento del sistema. Las bombas con motor eléctrico trabajan a una velocidad constante. Para elegir la bomba adecuada para una instalación, seleccionaremos aquella bomba en la que el punto del funcionamiento del sistema coincida con su rendimiento máximo. Si las alturas de aspiración e impulsión se mantienen constantes el rendimiento será siempre el máximo, aunque, lógicamente, con el uso perderá rendimiento.

Si impulsamos directamente a la red y se modifican los caudales y las alturas manométricas, el punto de funcionamiento se desplazará de su punto óptimo reduciéndose su rendimiento. Así mismo, si las presiones en aspiración (positivas o negativas) se modifican el punto de trabajo se desplazará en la curva reduciéndose su rendimiento.

En estas condiciones de presiones y caudales variables, si queremos mantener unos rendimientos aceptables se deben instalar variadores de frecuencia que adapten las revoluciones de las bombas a los requerimientos del sistema. Si en algún momento los caudales solicitados son muy bajos, incluso con variadores los rendimientos serán bajos. Por esta razón es conveniente fraccionar los sistemas de bombeo con alguna bomba de menor tamaño.

Los rendimiento de las grupos de bombeo (motor+bomba) trabajando en condiciones estables pueden estar, en una instalación bien diseñada, por encima del 75 % y debido al elevado coste de la energía eléctrica es fundamental mantener la eficiencia y para ello llevar a cabo labores de mantenimiento y monitorizar los principales parámetros de los equipos.

Tal y como indicaba en el post anterior, uno de los indicadores relacionados con la calidad de las redes de riego en los proyectos de participación pública privada en regadíos (y que también se puede utilizar en el resto de infraestructuras hidráulicas de riego) es el “coeficiente mensual de servicio de presiones”.

Este indicador pretende asegurar que se cumplan con las presiones mínimas que se establezcan en el proyecto constructivo.

Están presiones vendrán determinados por la pérdida de carga que se produzca con los caudales de diseño. Estos caudales se suelen determinar para una determinada alternativa de cultivo, utilizando datos climatológicos de una serie de años y para el mes de máximo consumo.

Se suele asumir que un determinado número de años del periodo estudiado la instalación estará infra-dimensionada. Además se debe asumir que si hubiera un cambio de alternativa y se intensificara el cultivo de especies con elevadas necesidades hídricas (maíz, alfalfa, dobles cosechas) la instalación podría estar infradimensionada durante un número mayor de años. Evidentemente esta situación se dará en los meses con más necesidades hídricas del año.

Por otra parte, en el proyecto  se calcula la instalación a la demanda pero para un determinado coeficiente de simultaneidad. Esto quiere decir que no está previsto que todas las tomas rieguen al mismo tiempo. Si una mayoría de los regantes quieren regar de noche o después de una semana con mucho viento, la instalación tendrá problemas de presión.

Por otro lado, en la fase de proyecto se considera que la distribucion de los cultivos (unos con más requerimientos hídricos que otros) se realiza de forma aleatoria en el perímetro de riego de cada zona. Si en un ramal se concentra todo el cultivo de altas necesidades (maíz), ese ramal tendrá más perdidas de carga de las previstas y la presión será inferior a la exigida. Este escenario no es descartable en zonas donde existan cooperativas o empresas que gestionen fincas por ejemplo para deshidratar alfalfa y por tanto puede haber un elevado número de parcelas con un mismo cultivo.

En las condiciones de diseño, cuando el caudal de trabajo coincida con el de diseño, ¿qué puede suceder para que la presión sea inferior a la mínima?

  • Que se haya instalado una tubería de menor diámetro de la calculada en los proyectos.
  • Que la rugosidad de la tubería aumente por abrasión y la pérdida de carga sea mayor. Con el tiempo todas las tuberías son más rugosas pero su incidencia no va a ser apreciable.
  • Que las válvulas no abran completamente y provoquen una pérdida de carga excesiva. Los transductores de presión detectarán rápidamente esta anomalía.
  • Que no funcionen correctamente los reguladores de presión y provoquen más pérdida de carga de la prevista. Los transductores de presión detectarán rápidamente esta anomalía.

Además, aunque las presiones sean correctas es fundamental el buen funcionamiento de los transductores y el telecontrol para poder monitorizar el sistema. Un correcto sistema de gestión por telecontrol en el que estén incluidos los principales datos hidráulicos de la red permitirá adelantarse a los posibles problemas de bajas presiones y proporcionar soluciones de gestión, como podría ser el riego por turnos. Palabras casi malditas entre los regantes, estas del riego por turnos, y que sin embargo podrían llevar a importantes ahorros energéticos a cambio de libertad para elegir el momento del riego. Mi experiencia con determinadas Comunidades de Regantes que, a veces  obligadas por limitaciones en sus infraestructuras, están utilizando el riego a turnos es positiva. El gestor de la Comunidad dispone de herramientas informáticas para facilitar su gestión si bien también me he encontrado con Comunidades de Regantes que lo gestionan con una plantilla en papel y poco más. Pero esto ya es historia para otro post.

 

 

7-5-2014 12.5.18 1

Voy a tratar en una serie de post la explotación de instalaciones de regadío, diferentes maneras de gestionar la explotación, el ejemplo del modelo de Participación Público Privada (PPP) y algunas recomendaciones para tener en cuenta en el momento de la redacción del proyecto y ejecución de la obra.

Uno de los objetivos de las obras desarrolladas dentro del marco de la PPP es garantizar una adecuada calidad técnica en la explotación.

Mi opinión es que la calidad en la explotación es uno de los aspectos clave en las redes de regadío y que normalmente se ha llevado  a cabo bajo mínimos por falta de personal cualificado y experimentado y por la ausencia de un mínimo presupuesto, en muchos casos como consecuencia de la ausencia de un mínimo análisis que permita confrontar el coste del mantenimiento con los beneficios que lleva asociados.

La deficiente explotación afecta especialmente al telecontrol y elementos electromecánicos, válvulas,…

La falta de información hace suponer que el rendimiento es el adecuado o al menos suficiente.

Tenemos en el otro extremo el caso de la explotación controlada por una Oficina Técnica y con Parámetros a controlar ya expuestos en el momento de la licitación de la obra, en el caso de la ampliación de la Zona Regable del Canal de Navarra son:

K1: Coeficiente anual de eficiencia técnica y de gestión del agua.

k2: Coeficiente mensual de eficiencia en la continuidad del suministro.

k3: Coeficiente mensual de servicio de presiones.

K4: Coeficiente anual de instalaciones electromecánicas.

K5: Coeficiente anual de atención al cliente.

(El carácter anual de los coeficientes se significa con la letra K mayúscula, y el carácter mensual con la letra k en minúscula)

El control del agua suministrada se realiza por medio del primero de los coeficientes K1 que a su vez se ha subdividido en varios subcoeficientes:

K1t (técnico):

Anualmente se cuantifican las pérdidas físicas de agua debidas a averías imprevistas (PI) en los ramales de gran diámetro que normalmente se conoce por distribución “en alta”. El concesionario-adjudicatario  estará obligado a que estas sean las mínimas posibles pues está obligado a hacer frente a un coste asociado al volumen de agua perdido por averías.

K1g (de gestión):

Representa hasta qué punto se registra de forma precisa el volumen suministrado anualmente. Depende en gran medida del grado de mantenimiento del parque de caudalímetros y contadores.

Dentro de este grupo distinguiremos, de nuevo, dos (2) subcoeficientes:

– K1ga (de grandes ramales): controla la precisión de la medición del volumen suministrado “en alta”. Para ello se comparará anualmente el volumen medido por el caudalímetro instalado al comienzo del ramal y una vez descontadas las pérdidas del ramal, con la agregación de los caudalímetros de las zonas abastecidas por cada ramal.

– K1gb (de redes de distribución): controla la precisión de la medición de caudales en las redes de distribución a cargo del Concesionario. Para ello se comparará anualmente el volumen medido por el caudalímetro general de cabecera de sector o zona, una vez descontadas las pérdidas de la red, con la agregación de los volúmenes individuales registrados en los contadores de los hidrantes.

Una vez obtenidos los subcoeficientes (K1ga y K1gb) se calculará el coeficiente K1g, del sector o zona, como producto de ambos subcoeficientes. En la figura que aparece al principio del post se aprecia como el coeficiente disminuye conforme la diferencia de lecturas “en alta” o en redes de distribución aumenta.  Por tanto se hace necesario implementar una serie de medidas en proyecto y obra para evitar los siguientes problemas:

Valvulería y piezas especiales:

  • Oxidación de los tornillos y las piezas de calderería.
  • Bloqueo de los flotadores de las ventosas por suciedad.
  • Rotura de las clapetas.
  • Roturas de los hidrantes (cuerpo, microtubo, pilotos) por hielo si no se vacían o se protegen en invierno.

Tubería de PVC (roturas explosivas)

  • Tuberías defectuosas.
  • Instalación incorrecta con un mal asiento y relleno con material no seleccionado que golpea la tubería. La tubería de PVC, que es bastante frágil, se debe asentar sobre una cama de material seleccionado y la primera capa de tapado se debe hacer manualmente con material seleccionado procedente de la propia excavación. Si la tubería se golpea con piedras pueden ocasionar microfisuras que con el tiempo y la presión pueden provocar la rotura del tubo.
  • Separación de los tubos: si no se anclan debidamente las curvas y las tes de derivación, al desplazarse el anclaje por las fuerzas ejercidas por la presión interna de la tubería se separan.
  • Las sobrepresiones provocadas por transitorios ocasionados por cierre rápido de las válvulas y las ventosas.
  • Sobrepresiones sobrevenidas por el mal funcionamiento de las válvulas reguladoras.
  • Sobrepresiones provocadas por acumulación de aire.

En este tipo de tubería puede haber fugas en las juntas si están mal montadas o son defectuosas.

Tubería helicosoldada:

  • Tubería defectuosa.
  • Poros en las soldaduras defectuosas.
  • Poros por corrosión. Los terrenos de alta capacidad corrosiva y las corrientes vagabundas pueden corroer el tubo. Si se realiza un mal enterrado de la tubería se puede dañar la capa de protección externa facilitando la corrosión del tubo.
  • Al ser tubería de poco espesor es conveniente situar abductores de aire, ventosas y purgadores capaces de introducir y sacar el aire de la red correctamente.
  • En principio, es una tubería que puede soportar las sobrepresiones por transitorios.

En los siguientes post analizaremos el resto de coeficientes que nos pueden ayudar a llevar un adecuado control de las infraestructuras de regadío.

Un saludo.

Jesús.


Tengo que reconocer que nada más escuchar la palabra drón me pongo un poco a la defensiva por su relación con  el ámbito militar y policial. Las primeras misiones de estos aparatos han sido patrullar el espacio aéreo de una ciudad ante el temor de un atentado terrorista, espiar territorio enemigo durante una guerra o incluso realizar incursiones de ataque contra objetivos muy específicos, esto último ha cosechado muchas polémicas, sobre todo cuando los objetivos han sido blancos humanos. Sin embargo, poco a poco van apareciendo drones diseñados para otras aplicaciones y mucho más baratos. Las pequeñas aeronaves no tripuladas conocidas como drones o como UAVs, por sus siglas en inglés, son robots aéreos semiautónomos cuya presencia en los cielos del mundo es cada vez más habitual. Parece que aún queda tiempo para que los drones se hagan su sitio en el sector agrario y su utilización queda, de momento, relegada al campo experimental y,  a países como Estados Unidos, donde las dimensiones de las explotaciones son mucho más grandes que las que nos podemos encontrar normalmente en España.

El motivo es que su principal función es monitorizar el estado de los cultivos y esto sólo tiene sentido en fincas de cientos o miles de hectáreas. En estas fincas la toma de decisiones se puede realizar de una manera mucho más precisa usando los drones. El momento y el alcance de la aplicación de un tratamiento se decide en función de las imágenes tomadas desde el aire. Además la información se puede georeferenciar .

El concepto surgió de equipar  al avión con unas cámaras de luz visible y de otras longitudes de onda del espectro que toman las imágenes se examina el reflejo de la luz ambiente sobre los terrenos. Esto genera una especie de “mapas de calor” de gran precisión que pueden examinarse posteriormente con el software adecuado.

Los colores de las imágenes simbolizan los valores de concentración de ciertos compuestos químicos, un cálculo de la biomasa y otros detalles. Como las cámaras pueden distinguir la superficie ocupada por las plantas con gran precisión esos valores mejoran los cálculos que si se realizaran tan solo de forma aproximada. Los agricultores pueden entonces decidir utilizar un tipo de fertilizantes u otros o aplicar pesticidas de una manera mucho más eficiente.

En el sector de la investigación también se está trabajando con drones. En Florida, agricultores e investigadores han utilizado pequeños helicópteros no tripulados equipados con cámaras de infrarrojos para controlar una enfermedad bacteriana que mata los naranjos y que comienza en la parte superior del árbol. También investigadores de Universidad de Oregon usan aviones sobre los campos de patata para controlar la enfermedad sobre el cultivo.

El coste de los aparatos, mantenimiento así como su reducida autonomía son hoy por hoy algunas barreras que frenan su utilización en la agricultura.

Además los drones son, hasta el momento, un asunto bastante técnico. El procesado de datos y procesamiento de imágenes a partir de drones todavía requieren conocimientos técnicos. Como ejemplo, el fabricante 3D Robotics no está vendiendo sus drones directamente a los agricultores. Sin embargo, sí que vende aviones no tripulados para analistas de cultivos, que les recomiendan a los agricultores las mejores prácticas de cultivo.

Si alguno de vosotros teneis conocimiento de alguna experiencia no dudéis en compartirlo con nosotros.

Os dejo algunos sitios con información interesante:

http://www.novadrone.com/

http://www.airinov.fr/

http://aerialfarmer.blogspot.com.es/

http://www.cropcam.com/

Como ya indicaba en el último post “optimización de los equipos de bombeo”  tradicionalmente se han dimensionado los equipos de bombeo a partir de las necesidades de caudal y presión para una situación o escenario determinados. Por un lado,  el caudal punta de la red a la demanda, cuando cada regante gestiona libremente el tiempo de riego de su hidrante, se suele calcular por medio de la metodología de los caudales de Clement , a partir de las necesidades de agua de la alternativa de cultivos, entre otras consideraciones.

La presión que debe suministrar el sistema es la que el proyectista considere suficiente para que la totalidad de los hidrantes o un porcentaje elevado de los mismos dispongan de la presión de consigna o superior.

Sin embargo, la aparición de aplicaciones informáticas permite optimizar el dimensionado de las estaciones de bombeo y de las redes de riego. Ya sea por medio de hojas Excel (sólo para redes de riego sencillas y con pocos hidrantes) o software específico como es GESTAR los procedimientos de optimización determinan el mínimo coste total anual del sistema,  entendiendo dicho total como la suma del coste de amortización de la inversión y el coste de explotación, simplificando este último normalmente al coste energético.

En este proceso, al aumentar la altura disponible en cabecera, Hd, para el caudal de diseño Qd, existe una relación inversa entre el coste energético (creciente) y el coste de las conducciones de la red (decreciente), como se ilustra en la Figura 1. (Curva del coste anual total del sistema en función de la altura piezométrica disponible en cabecera, Hd , suma de los costes de amortización anual de las tuberías instaladas (CAT) y el coste de la energía (CE) necesaria al año). En el conjunto del coste energético, el término de energía (producto de la energía consumida (kWh) por el precio medio (€/kwh)) es el de mayor peso en las facturas eléctricas anuales según el sistema de tarificación vigente.

La curva de amortización de los materiales nos lleva a valores decrecientes conforme los diámetros de las tuberías son menores.  Todo lo contrario de lo que ocurre con la energía que debe suministrar el sistema para alcanzar la  presión de consigna por medio de una red de tuberías con diámetros menores  (y por tanto más económica).

Así pues, se trata de encontrar el mínimo punto de la curva de amortización de los materiales y de los costes energéticos.

Total annual cost vs available head pressure

Como sugiere la Figura, para una misma curva de coste de amortización de las tuberías (CAT) en función de la altura nominal de disponible en cabecera (Hd), las distintas evaluaciones que se puedan realizar de los costes energéticos anuales (CE1, CE2) en función de diferentes metodologías o tarifas aplicadas, conducen a distintos “diseños óptimos” (Hd1 , Hd2 ). Por tanto la cuantificación realista de los costes energéticos es de interés desde las primeras etapas del proyecto.

Según los últimos datos facilitados por la Oficina del regante de Aragón la modificación de los precios de las tarifas eléctricas va a suponer desde el mes de agosto de 2.013, un aumento entre el 10 y el 30% para la mayoría de comunidades de regantes. Por lo tanto conviene ser prudente a la hora de estimar los costes anuales del sistema y de su impacto en la decisión del punto de mínimo coste anual.

Para la optimización de los equipos de bombeo en regadíos conviene recordar que  la necesidad de altura en cabecera no es constante en el tiempo para una red de riego a la demanda. Debemos cambiar el caudal de cabecera de la red calculado por Clement por una nube de puntos que representan diferentes relaciones caudal y presión en cabecera.

He recogido de la publicación “mejoras en la predicción de costes de energía” presentada en el Congreso Nacional de Regadíos (España) por el equipo de investigación de GESTAR, la siguiente figura:

head pressure heights required vs flow

En la cual se ilustra para una red de riego real la nube de alturas requeridas en cabecera, remarcándose la altura máxima y mínima. Para cada caudal tenemos un amplio rango de presiones requeridas que el sistema debe ser capaz de suministrar si bien debemos de ser capaces de discriminar los valores que no van a ser representativos. Por medio de herramientas específicas podemos generar miles de escenarios aleatorios que nos ayudaran a discriminar las situaciones “excepcionales” y podemos ajustar la potencia de la estación.

La buena noticia es que disponemos de herramientas para modelar de manera muy sencilla, a la par que rigurosa, el comportamiento completo de una estación de bombeo  directo con cualquier tipo de regulación siguiendo una curva de consigna mediante una, o varias, bombas de velocidad variable (o bien siguiendo la curva neta de altura de impulsión de la asociación en paralelo, si todos los grupos son de velocidad fija). Para ello, basta con interpretar el conjunto de la estación de bombeo  como una Bomba Virtual cuyas curvas Altura de Elevación y Potencia Absorbida (o Rendimiento) vs Caudal Neto sean precisamente las Curvas de Operación de la estación de bombeo, es decir la Curva de Consigna impuesta a la EB, y la de Potencia Absorbida Total en función de Caudal Neto, para la composición y tipo de regulación empleada.

Es conveniente que el modelo de simulación permita configurar y comparar ágil y flexiblemente cualquier diseño de estación de bombeo, ofreciendo la opción de composiciones

con números arbitrarios de bombas de RPM constantes (BVF) y de RPM variables (BVV), de igual o diferente tamaño, pudiendo considerar, en el caso de que haya varias BVV, la actuación

de los variadores de forma secuencial (una BVV regulando la presión en cada momento) o simultáneamente (dos BVV regulando simultáneamente con la misma velocidad de giro), ya

que, como ilustra la Figura 13, los resultados en términos de rendimiento, potencia consumida, etc puede diferir notoriamente de unas opciones a otras.

Performance vs Flow

FIGURA 13. Curvas de rendimiento total obtenidas para una Estación de Bombeo según el diseño inicial y mejoras modificando los parámetros de regulación

As stated in the last post “optimizing pumping equipment” traditionally pumping equipment has been sized from the flow and pressure requirements for only a  specific situation or scenario. On one hand, the network peak flow demand (when each irrigator freely manages its watering time hydrant)  is usually calculated by the methodology of Clement  from water needs of the alternative or crop rotation, among other considerations.

On the other hand, the engineer designer deems  the pressure to be supplied by the system when  all irrigation hydrants or a large percentage of them have the set pressure or higher.

However, the emergence of applications to optimize allows calculate the sizing of the pumping stations and irrigation networks much more accurately. Whether through Excel sheet (only for simple irrigation networks with few hydrants) or specific software such as GESTAR will determine the minimum total annual cost of the system (as the sum of the cost of depreciation of the investment and operating costs, simplifying the latter usually as the energy cost).

In this process, to increase the head pressure Hd, to the designed flow Qd, an inverse relationship exists between the energy cost (increasing) and the cost of the piping network (decreasing) as shown in figure 1: Total annual cost curve of the system depending on the available head pressure, Hd, sum of annual depreciation costs of the installed pipes (CAT) and energy cost (EC) required per year. In the overall energy cost, the energy term (product of energy consumed (kWh) by the average price (€ / kWh) is usually the most significant in annual electric bills.

The depreciation curve of materials leads to decreasing values ​​as the diameters of the pipes are smaller. The opposite happens with the energy to be supplied by the system to reach the reference pressure through a network of pipes with diameters smaller (and thus cheaper).

So it comes to finding the minimum point on the curve of amortization of materials and energy costs.

Total annual cost vs available head pressure

As suggested by the figure, for the same cost curve pipes amortization (CAT) based on nominal head pressure (Hd), different assessments can be made in annual energy costs (CE1, CE2). They are based on different methodologies or charges applied, lead to different “optimal designs” (Hd1, Hd2).  So, realistic approaches of energy costs must be made since the early stages of the project.

According to the latest data provided by the Irrigation Office of Aragon (North of Spain) price changes in electricity rates will mean, since August 2013, an increase between 10 and 30% for most Water User Associations. Therefore caution should be exercised when estimating the annual costs of the system and its impact on the decision of the minimum annual cost point.

Optimization of irrigation pumping equipment should be take into account  that the need for header pressure  is not constant in time for a network of irrigation demand. We must change the header flow calculated by Clement network by a cloud of points representing different flow and pressure relationships in header (network setpoint curve)

I collected  the following figure 2 from the publication “improvements in the prediction of energy costs” presented at the National Irrigation Congress (Spain) by the research team GESTAR. It is illustrated, for a real irrigation network, the head pressure heights required, highlighting the maximum and minimum height. For each flow we have a wide range of pressures required that the system must be able to supply. We should be able to discriminate the values ​​will not be representative. Through specific tools can generate thousands of random scenarios to help us discriminate situations “exceptional” and we can adjust the power of the station.

head pressure heights required vs flow

 

 

 

 

 

 

 

The good news is that we have tools to model direct pumping station with any regulation setpoint following a curve by several variable or fixed  speed pumps. To do this, simply interpret  the entire pumping station as a “Virtual Pump”. “Virtual Pump´s curves, absorbed Power (or Performance) vs. Net Flow curves,  are the sum of the individual pumps taken into account the variable speed pumps can work in different points according the network setpoint curve).

It is desirable that the simulation model allows to configure and compare agile and flexibly any pumping station design. It must be offer  the choice of compositions with arbitrary numbers of pumps constant RPM (BVF) and RPM variables (BVV) of equal or different size. It  may be considered, if there are multiple BVV, action of variable sequentially (one pressure regulating. BVV time to time) or simultaneously (two regulating BVV simultaneously with the same speed), The results in terms of performance, power consumption, etc may differ notoriously from one option to another as illustrated in next Figure (Performance vs Flow)

Performance vs Flow

 

 

 

 

 

 

Note: the images are taken from the presentation of the Technical Conference GESTAR issued by the group in June of 2,013 EUPSH, Huesca (Spain)